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Abstract

It’s well known, that the morphology of a carcinoma cells was studied many a time and oft
(on repeated occasions) from the second part of the XX century. But mathematical approximations
of such sarcoma cell structures are not very good on the grounds of non-regular semi-chaotic
elements in morphogenesis and morphology of cancer cells. Many approximations in sarcoma
oncology works are not applying for cell morphology as is, despite the fact of good morphological
representation of sarcoma cells in different microscopic and specific-staining methods. Our work is
a first work where the multi-beam interference patterns of living sarcoma cells are approximated
by a fractal Julia set and Fatou components known as a Siegel discs.

Keywords: sarcoma, oncomorphology, interference microscopy, multi-beam interference,
Fatou components, Siegel discs, Riman spheres, Julia set.

1. Introduction

1. Why the carcinoma cell is optimal object for analytical morphology?

It’s well known, that the morphology of a carcinoma cells was studied many a time and oft
(on repeated occasions) from the second part of the XX century. They were analyzed not only in
static, but also in dynamic (kinetic) reaction conditions, which may be applied as potential
therapeutic agents, including a respiration and morphology of sarcoma cells exposed to liquid
nitrogen (Hodapp et al., 1952).

We can separate physical or physiotherapeutic and chemical or chemotherapeutic agents
(Prince, 1962) of this reaction studies into multiple dimensions of multi-descriptor scores (or
manifolds):

L. channelome-mediated agent pulls (Civitelli et al., 1992);

IIL. second messenger pulls (for example, cyclic adenosine monophosphate = 3',5'-cyclic
adenosine monophosphate, which is equivalent to cAMP, cyclic AMP, in abbreviations) (Mitchell et
al., 1978));

I1I. cytoskeleton-associated agent pulls (for example — ABP-assisted pulls [Actin-Binding
Protein], in particular — vinculin® phosphorylation pulls (Kellie et al., 1986);

* By definitions: 1) vinculin is a membrane-cytoskeletal protein in focal adhesion plaques that is involved in
linkage of integrin adhesion molecules to the actin cytoskeleton; 2) vinculin is a cytoskeletal protein
associated with cell-cell and cell-matrix junctions, where it is thought to function as one of several interacting
proteins involved in anchoring F-actin to the membrane; 3) vinculin is actin binding protein localized in focal
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IVv. dose dependent effect pulls (for some agents, such as sodium butyrate), including
inhibition of proliferation pulls, differentiation induction and repression induction (repression of
gene expression) pulls (Altenburg et al., 1976);

V. sarcoma growth factors and their derivatives or mimetics (Keski-Oja et al., 1980;
Tokuyama and Tokuyama, 1989);
VI pulls of clonal factors (Earle, 1975);
VII. mitotropic and nucleotropic agents (Seegers et al., 1992);
VIII. virological agent pulls (Smidova et al., 1968; Altenburg et al., 1976);
IX. pulls of oncogenic agents sensu stricto (Chaturvedi, 2013);
X. snake venom cytotoxin pulls (Pate et al., 1969).

But mathematical approximations of such sarcoma cell structures are not very good on the
grounds of non-regular semi-chaotic elements in morphogenesis and morphology of cancer cells.
Many approximations in sarcoma oncology works are not applying for cell morphology as is
(Svoboda and Hasek, 1956), despite the fact of good morphological representation of sarcoma cells
in different microscopic and specific-staining methods. In different years for sarcoma oncology
studies many different microscopic and specific-staining methods was applied. Among them were
noted:

A. electron microscopy (Gandzii, 1956; Yasuzumi et al., 1960; Luse, 1960; Driessens et
al., 1964; Kubo et al., 1969; Courington and Vogt, 1967; Rice et al., 1973; Waldo, 1979; Kukuté and
Smirnova, 1981; Choux et al., 1981; Kanaya et al., 1985; Husain and Nguyen, 1995; Marquart,
2006)

B. combined electron and light microscopy (Weinberger and Banfield, 1965; Fabrizio and
Cottrell, 1972; Fj et al., 1975; Varela and Diazflores, 1977; Waldo et al., 1983; Akerman, 1988;
Akerman et al., 1988; Beziat et al, 1989);

C. comparative scanning electron microscopy and transmission electron microscopy
(Llombart-Bosch and Peydro-Olaya, 1983)

D. mass determination of sarcoma virus virions by scanning transmission electron
microscopy (Vogt and Simon, 1999);

E. cryo-electron microscopy (Briggs et al., 2006);

F. immunoelectron microscopy (Aoki et al., 1973; Houston, 1974; Hiraki et al., 1974;
Kawauchi, 1995; Becker et al., 1991);

G. comparative electron microscopic and immunohistochemical studies (Mukai et al.,

1983; Oord et al., 1986; Welch, et al., 1986; Nonomura et al., 1988; Nanomuna, 1988; Pettinato et
al., 1989; Nishio et al., 2003);

H. comparative light-scattering spectroscopy and electron microscopy for determination
of hydrodynamic radiuses of viruses in sarcoma cells (Salmeen et al., 1976;

I. electron microscopy of viruses in sarcoma cells (Nishimi et al., 1961; Hanaichi et al.,
1975; Orenstein et al., 1997; Said et al., 1997);

J. electron microscopy of nucleic acids of sarcoma cells (Guntaka et al., 1976; Murti et
al., 1981);

K. conventional or light microscopy (Siegler, 1970; Ackerman, 1979; Amazon and
Rywlin, 1979; Tsokos et al., 1988);

L. correlation studies between microscopy data, magnetic resonance imaging data and

positron emission tomography data [or two-photon emission tomography data, which are
equivalents] (Plowman et al., 2016);

M. phase contrast microscopy (Ludford and Smiles, 1950; Kato and Makino, 1962; Vesely
and Pluta, 1972);

N. florescence microscopy (Dorfman, 1962), including epiluminescent microscopy
(Krischer et al., 1999);

0. ultraviolet microscopy (Roe and King, 1950; Zhudina and Shalumovich, 1969;

P. in vivo reflectance confocal microscopy (Grazziotin et al., 2010; Paganelli et al., 2018);

Q. structured illumination microscopy (Fu et al., 2016);

adhesions and cell-cell junctions; 4) vinculin is tyrosine phosphorylated in platelets spread on fibrinogen and
that the phosphorylation is Src kinases dependent.
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R. interference microsopy and quantitative cytology / cytopathology based on this
technique, including multiple-beam interference microscopy and similar analytical protocols
(Mellors et al., 1953).

2. Why interference microscopy is optimal micro-technique for analytical
morphology?

Unfortunately, despite this fact (particularly, despite the quantitative character of multiple-
beam interference microscopy, consequently, the quantitative character of interference cytometric
and cytopathological data), as a general rule interference microscopy are not usable as a wild-field
histological method for carcinoma cell morphology visualization, detection and quantification. It is
not very good simplification of research protocols and microdiagnostic approaches, because the
photometric methods for the measurement of the organic mass of cells, cell components (including
sets of chromosomes) by multiple beam interference microscopy are not only possible, but also
they are very effective (Melors, 1953, 1954)!

Multiple-beam interference microscopy was developed initially not only as a technique for
material science and metallography (Faust, 1952), but from the third quarter of the XX century
they was applied predominantly for metal structure analysis (Tolansky, 1970; Richardson, 1972)
and (much later) for liquid crystal measurements, based on the phase retardation principles
(Chernyaev et al., 2008). Multiple-beam interference microscopy was reborn in 2000, when
multiple beam interference confocal microscopy was designed and implemented in cell biology
laboratories (Joshi and Medina, 2000; Joshi and Medina, 2000b), including biophysical
departments, where some effects of an electric field on the motility of cells was examined by
multiple-beam interference microscopy techniques (Joshi et al., 2001). Detection, dynamical
imaging and kinetics of sub-micron organelles of specialized cells (for example — chondrocytes)
were implemented by multiple beam interference microscopy in 2004 (Joshi et al.,, 2004).
Diffential interference phase contrast microscopy using multiple beam shearing interferometry for
bio-imaging was applied in 2006 (Roy et al., 2006). Capturing and sorting of multiple cells by
polarization-controlled three-beam interference was realized in 2016 (Hou et al., 2016). But such
methods were not applied for carcinoma cells.

3. What kind of interference microscopy is optimal for the target cells?

Everyone would very much like to eliminate this omission, because methods of interference
microscopy and by interference phase microscopy of cancer cells were developed from 1960t
(Sandritter et al., 1960; Hirst, 1961) and very good developed to date or by now (in frames of spatial
light interference microscopy (Majeed et al., 2015, 2016), differential interference contrast
microscopy assisted by nanoparticles (Sun et al., 2008, 2010), reflection interference contrast
microscopy (Matsuzaki et al, 2016)). It is a very specialized branch of the general trend of
interference microscopy of living cells, provided in different techniques, such as:

1) digital holographic interferention microscopy (Kizilova et al., 2010);

2) spatial light interference microscopy (Babacan et al., 2011; Popescu and Wang, 2012),
including deconvolved spatial light interference microscopy for live cell imaging (Haldar et al.,
2011);

3) interference reflection microscopy (Gingell and Todd, 1979; Verschueren, 1985),
including quantitative reflection interference contrast microscopy or RICM (Schindl et al., 1995;
Usson et al., 1997; Holt et al., 2008; Limozin and Sengupta, 2009);

4) fluorescence interference-contrast microscopy (Braun and Fromherz, 1997);

5) phase-shifting interference microscopy (Dunn and Zicha, 1993);

6) correlational mapping between interference-reflexion and indirect-
immunofluorescence microscopy photoregistrograms (Wehland et al., 1979);

7) laser interference microscopy with volumetric and cytorefractometric measurements

(Yusipovich et al., 2011) and coherent phase microscopy (Tychinsky and Tikhonov, 2010a;
Tychinsky and Tikhonov, 2010b);

8) phase-modulation laser interference microscopy (Brazhe et al., 2008);

9) interference microscopy under double-wavelet analysis (Sosnovtseva et al., 2005);

10)  dual-interference-channel quantitative-phase microscopy (Shaked et al., 2009);

11) scanning angle interference microscopy (Paszek et al., 2012);
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12) Nomarski differential interference contrast microscopy (Geissinger and Bond, 1971;
Geissinger and Duitschaever, 1971) and other (for example — Pluto DIC) differential interference
contrast microscopy techniques (Falimirski et al., 2007);

13)  total internal reflection aqueous fluorescence overcomes a basic ambiguity of
interference reflection microscopy (Todd et al., 1988); etc.

4. Why multiple beam interference microscopy is informative source?

It’s known, that the multiple beam interference may be used for discrete signal transmission
with small noise levels (Bhardwaj et al., 2017; Hibino and Takatsuji, 2002). Multiple-beam
interference effects in Fabry-Perot interferometer with small wedge between mirrors, deriving
expressions for light beams path, were researched in 1970 not only in USA, but also in USSR
(Koniukhov, 1971). Mechano-optical transductors / sensors based on multiple-beam interference
were introduced for optical waveguide measurements in XXI century (El-Diastry, 2001), but their
physical and technical principles were developed in XX century, where the Barakat group was
started the project on the GRIN optical waveguides (Barakat et al., 1985, 1988, 2001), despite the
fact, that the first Barakat works for multiple beam interference studies were published in 1960t
(Barakat and Abouzakhm, 1985; Barakat et al., 1965). Earliest works on multiple beam interference
fringes and their applications were published from 1940t to 1960t (Tolansky, 1945; Brossel, 1946;
Tolansky and Barakat, 1950; Bruce, 1951; Glauert, 1951; Smith, F. D. 1952; Tolansky and Emara,
1955; Hargreaves, 1963; Burnett, 1965; Herriott, 1965, 1966; Fulinska, 1966). Some very beautiful
works were published in 1970t (Roberge and Boivin, 1971; Koppelmann, 1972, 1974; Koppelmann
and Vosskuhl, 1973) and 1980t (El-Dehemy et al., 1981; Baumbach et al, 1989). Fist articles by
Tolansky were republished in 1990t — 2000 in “SPIE milestone series” (Tolansky, 1991, 2000).
Many interesting applications for multiple beam interference fringes were provided in 1990t —
2000t (Shao-po, 1999; Tadmor et al., 2003; Abdelsalam et al., 2010; Hamza et al., 2010; El-
Hennawi et al., 2012).

2. Relevance

Different types of cells may be measured and quantitative or semi-quantitative visualized by
different methods of interference microscopy (Mellors, 1953; Barer and Joseph, 1957; Dunn, Zicha,
1994). Examples include:

. calculation of lignin concentration and porosity of cell-wall regions by interference
microscopy (Boutelje, 1972; Donaldson, 1985);

. dry mass and cell area measurements (Goldacre et al., 1957; Lee at al., 1960);

° cell-substrate interactions in amoeboid locomotion (King et al., 1983);

. interaction between intracellular vacuoles and the cell surface (Gingell, 1982);

. growth cone interactions with cell and substrate adhesion molecules of cells (Drazba
et al., 1997);

o visualization of red cell membranes (Miller and Dvorak, 1973);

. bacterial cell identification in DIC interference contrast microscopy in label-free
conditions (Obara et al., 2013);

° radiation dose effect analysis (Lee and Richards, 1964);

o comparative analysis of epithelial cells (Pappelis et al., 1976);

° real time 3D and “4D” imaging of cells (Salmon et al., 1998; Li et al., 2007; Tsunoda

et al., 2008), from yeast cells to cancer cels.

71




European Journal of Medicine, 2019, 7(2)

Fig. 1. Multiple beam interference image of living sarcoma cells in a tissue culture

3. Materials and methods

It has been known that biological membranes as thin films are characterized by multiple-
beam interference and, consequently, can be directly detected using multiple-beam interference
microscopy. Multiple beam interference microscopy patterns of membranous cellular structures
with different surface tension levels are different from the standard optical images of these objects.
This follows at once from physical considerations. Thin-film interference occurs when the incident
light waves reflected by the upper and lower boundaries of the membrane cell film interfere with
one another to form a new wave.

A B
Fig. 2. A fractal Julia set with a Siegel disc (A) and a filled Julia set for the golden mean rotation
number with the the Siegel disc and some orbits inside (B)
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Fig. 3. Infolding Siegel disc near 2/7

4. Results
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Fig. 4. Infolding Siegel disc near 1/3. One can see virtual Siegel disc

This is sketched in Fig. 1 representing a multiple beam interference image of living sarcoma
cells in a tissue culture in air (magnification: 1.000). Optically identical regions are presented as
light and dark elliptical zones which together form a topographic map of the cell. The cell thickness,
shape and intramembranous volume can be easily calculated from the interference pattern.

In accordance with the modern standards the above method may seem to provide insufficient
resolution and low information. However, there are still no mathematical approximations of
intermembrane interference patterns, different from the ones derivable from the first physical
principles. We propose here to apply Julia sets and Fatou components, such as Herman ring and
Siegel disc for approximating carcinoma cells. The definition of Siegel disc is provided in the Table
1. Fig. 2 (compare with Fig. 1) shows an example of such an approach application, representing the
early iterations of a fractal Julia set with a Siegel disc and an "isosurface-like" ("equipotential line —
like") visualization of this filled Julia set for the golden mean rotation number with the Siegel disc
and some orbits inside. It can be seen that Fig. 2 satisfactory simulates the morphology from Fig. 1.
Thus, there is an appropriate approximation for this morphology due to the membranous
properties of the cell represented here formally using Fatou components. A similar visualization
can be obtained using the Herman ring, but this is beyond the scope of this report for the lack of
space. The morphology of cells with filopodia also may6 be approximated by Siegel disc formalism,
including dynamic representation (see Fig. 3 — “Infolding Siegel disc near 2/7” and Fig. 4 —
“Infolding Siegel disc near 1/3”).
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Table 1. Definition of Siegel disc

Definition of Siegel disks

Setting

0 € U open subset of C
f : U — C holomorphic

f defines a dynamical system: z,;1 = f(z,)

f(0) = 0 (the origin is a fixed point)
the multiplier £/(0) has modulus one: f/(0) = 2™
the multiplier is aperiodic: 6 ¢ Q

This is called an
irrationally indifferent fixed point of a complex one dimensional
holomorphic dynamical system.

What would it mean to behave like a rotation? That near 0,
e f is analytically conjugated to Ry : z — €*™2? (meaning 3¢ analytig
bijection defined near 0 mapping 0 to 0 and ¢ o f o ¢! = Ry)

@ f is topologically conjugated to Ry? (now ¢ is only required to be a
homeomorphism)

@ the orbits stay bounded? (Lyapunov stability)

It turns out that all three are equivalent. We say that f is linearizable.

The quantity @ is unique and is called the rotation number.

https://www.math.univ-toulouse.fr/~cheritat/ Exposes/Rome.pdf

T

5. Supplements: Possible program codes from the open access I-net sources

The Julia setis the set of complex numbers zthat do not diverge under the following
iteration:

7=72+CZ=72+C

Where c is a constant complex number.

Different values of z reach infinity at different rates. A colourful fractal is produced by
colouring the complex plane based on the number of iterations required to reach infinity.

function colour = julia(c, total_iterations, image_ size, limits)

% Calculates julia set by iterating z = z*2 + ¢, where z and ¢ are complex,

% and recording when z reaches infinity.

%

% Inputs:

%

% c Fixed complex number, of form a + bi

% total_iterations Number of iterations of z =z"2 + ¢

% 1image_size 2D vector with number of complex coordinates in
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% x and y directions

% limits Vector with 4 elements: min x, max x, min y, maxy
%

% Outputs:

%

% colour Matrix of doubles, with size equal to image_ size.
% Plotting this matrix will produce a julia set

im_step = (limits(4) - limits(3)) / (image_size(2) - 1);
re_step = (limits(2) - limits(1)) / (image_ size(1) - 1);

reals = limits(1) : re_step : limits(2); % Real numbers

imags = limits(3) : im_step : limits(4); % Imaginary numbers

z = bsxfun(@plus, reals(:), (imags(:) * 11)"); % Complex coordinates
colour = inf(size(z)); % Colour of Julia set

for iteration = 1:total_iterations
index = isinf(z);
% Only perform calculation on the z values that are less than infinity
z(~index) = z(~index)."2 + ¢;
% Colour depends on number of iterations to reach infinity
colour(index & isinf(colour)) = iteration;

end

colour = colour'; % Transpose so that plot will have reals on the x axis

end
https://codereview.stackexchange.com/questions/145752/function-for-plotting-julia-set
function Julia(c,k,v)

% JULIA(C,K,V) draws the Julia set with the following parameters:
% c is a complex number used in the map f(z) = z2 + c.

% k gives the number of iterations

% v determines the number of points on the x-axis.

% JULIA uses ¢ = 0.2+0.65i1, k = 14, v = 500.

% This file was generated by students as a partial fulfillment
% for the requirements of the course "Fractals", Winter term
% 2004/2005, Stuttgart University.

% Author : Sylvia Frey
% Date : Nov 2004
% Version: 1.1

% default settings
if nargin < 3
¢ = 0.24+0.65i;

k=14;
V = 500;
end

% radius of the circle beyond which every point diverges
r = max(abs(c),2);
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% divide the x-axis
d = linspace(-r,r,v);

% create the matrix A containing complex numbers
A = ones(v,1)*d+i*(ones(v,1)*d)";

% create the point matrix
B = zeros(v,v);

% iteration
for s = 1:k

B = B+(abs(A)<=r);

% the map

A = A*A+ones(v,v).*c;
end;

% plot settings
imagesc(B);
colormap(jet);

hold off;
axis equal;
axis off;
http://m2matlabdb.ma.tum.de/download.jsp?MC_ID=5&SC_ID=13&MP_ID=283
Julia(c,k,v) draws the Julia set with the following parameters:
c is a complex number used in the map f(z) = z"2 + c.
k gives the number of iterations.
v determines the number of points on the x-axis.
Julia uses ¢ = 0.2+0.65i, k = 14, v = 500.
This file was generated by students as a partial fulfillment
for the requirements of the course "Fractals",
Winter term 2004/2005, Stuttgart University.

function myjulia(Zmax,c,N)

% Generate and visualize quadratic Julia Sets

% More information about Julia Sets can be found here:

% http://en.wikipedia.org/wiki/Julia_set

% this code is for the assignment of the "Introduction to Matlab" offered
by MITOPENCOURSEWARE

% Coded by http://scriptdemo.blogspot.com

if (nargin==1)

Ndemo=Zmax; clear Zmax

switch Ndemo

case {1}
myjulia(1,-0.297491+i*0.641051,100);
return;

case {2}
myjulia(0.35,-0.297491+i*0.641051,250);
return;

otherwise
disp('Not defined demo type!')
help myjulia;
return

end
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elseif (nargin~=3)
help myjulia;
return

end

% generate the basic matrix

NM=500;
[Z,tmpy]=meshgrid(linspace(-Zmax,Zmax,NM),zeros(1,NM));
Z=7+1*Z'; clear tmpy

% compute the escape velocity
myM=reshape(escapeVelocity(Z(:),c,N),NM,NM);

% visualize the results
imagesc(atan(0.1*myM)); figurenicer;axis xy;

function n=escapeVelocity(zo,c,N)

n=z0*0;

NLen=length(zo);

IndZ=1:length(zo0);

IndZ=IndZ';

for ni=1:N
IndLT=find(abs(z0)<2);
IndGE=find(abs(z0)>=2);
n(IndZ(IndGE))=ni;
if (length(IndLT)>0)

zo(IndLT)=zo(IndLT).*zo(IndLT)+c;

end
zo(IndGE)=[];
IndZ(IndGE)=[];

end

if ~isempty(IndZ)

n(IndZ)=N;
end

Basin of attraction to infinity = exterior of filled-in Julia set and The Divergence
Scheme = Escape Time Method ( ETM )

First read definitions
Here one computes forward iterations of a complex point Z:

Here is function which computes the last iteration, that is the first iteration that lands in
the target set ( for example leaves a circle around the origin with a given escape radius ER ) for the
iteration of the complex quadratic polynomial above. It is a iteration ( integer) for which
(abs(Z)>ER). It can also be improved [2]

C version ( here ER2=ER*ER) using double floating point numbers ( without complex type
numbers):

int GiveLastIteration(double Zx, double Zy, double Cx, double Cy, int IterationMax, int ER2)
{

double Zx2, Zy2; /* Zx2=Zx*Zx; Zy2=Zy*Zy */

int i=0;

7x2=7X*7X;

Zy2=7y*Zy;

while (i<IterationMax && (Zx2+Zy2<ER2) ) /* ER2=ER*ER */

{
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Zy=2*7x*7y + Cy;
7x=7x2-7y2 +Cx;
7x2=7x*7Xx;
Zy2=7y*Zy,

i+=1;

¥

return i;

h
C with complex type from GSL :[3!

#include <gsl/gsl_complex.h>
#include <gsl/gsl_complex_math.h>
#include <stdio.h>

// gcc -L/usr/lib -lgsl -lgslcblas -lm t.c
// function fc(z) = z*z+c

gsl_complex f(gsl_complex z, gsl_complex c) {
return gsl_complex_add(c, gsl_complex_mul(z,z));
}

int main () {
gsl_complex ¢ = gsl_complex_rect(0.123, 0.125);

gsl_complex z = gsl_complex_rect(0.0, 0.0);

int i;
for (i=0;i<10;i++){
z = 1(z, ¢);

double zx = GSL_REAL(z);
double zy = GSL_IMAG(z);
printf("Real: %f4 Imag: %f4\n", zx, zy);

return O;

¥

C++ versions:

int GiveLastIteration(complex C,complex Z , int imax, int ER)

{

int i; // iteration number
for(i=0;i<=imax-1;i++) // forward iteration

{
7=7*7+C; // overloading of operators

if(abs(Z)>ER) break;

return i;

¥

#include <complex> // C++ complex library

// bailout2 = bailout * bailout
// this function is based on function esctime from mndlbrot.cpp

// from program mandel ver. 5.3 by Wolf Jung
// http://www.mndynamics.com/indexp.html

int escape_ time(complex<double> Z, complex<double> C, int iter_max, double bailout2)
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{
// z=x+y*l z0=0
long double x =Z.real(), y =Z.imag(), u, v;
int iter; // iteration
for (iter = 0; iter <= iter_max-1; iter++)
{u=x%x;
vV =Yy'y;
if (u + v <= bailout2 )
{
y =2 *x*y+ C.imag();
x=u-v+ C.real();
>/
else break;
}// for
return iter;
} // escape_time

[4]
Delphi version ( using user defined complex type, cabs and f functions )

function GiveLastIteration(z,c:Complex;ER:real;iMax:integer):integer;
var i:integer;
begin
1:=0;
while (cabs(z)<ER) and (i<iMax) do
begin
z:= 1(z,c);
inc(1);
end;
result :=i;
end;

where :
type complex = record x, y: real; end;

function cabs(z:complex):real;
begin

cabs:=sqrt(z.x*z.x+z.y*z.y)
end;

function f(z,c:complex):complex; // complex quadratic polynomial
var tmp:complex;
begin
tmp.x := (z.x*2.X) - (z.y*z.y) + ¢.X;
tmp.y := 2¥z.x*z.y + c.y;
result := tmp;

end;

Delphi version without explicit definition of complex numbers :

function GiveLastIteration(zxo0,zyo,cx,cy, ER2:extended;iMax:integer):integer;

// iteration of z=zx+zy*i under fc(z)=z*z+c
// where c=cx+cy*i
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// until abs(z)<ER ( ER2=ER*ER ) or i>=iMax
var i:integer;
zX,7y,
zx2,zy2:extended;
begin
ZX:=7ZX0;
Zy:=7yO0;
7X2:=7X*7X;
Zy2:=7y*zy;

1:=0;
while (zx2+zy2<ER2) and (i<iMax) do
begin
zy:=2%zx*z7y + cy;
ZX:=7ZX2-Zy2 +CX;
7X2:=7X*7X;
Zy2:=7Zy*Zy;
//
inc(1);
end;
result :=i;
end;

Euler version by R. Grothmann ( with small change : from z”*2-c to z*2+c) [5l
function iter (z,c,n=100) ...

h=z;

loop 1to n;

h=h"2 +¢;

if totalmax(abs(h))>1e20; m=#; break; endif;
end;

return {h,m};

endfunction

Lisp version
This version uses complex numbers. It makes the code short but is also inefficien.

((DEFUN GIVELASTITERATION (Z_o _C IMAX ESCAPE, RADIUS)
(SETQZZ 0)
(SETQI0)
(LOOP WHILE (AND (< I IMAX) (< (ABS Z) ESCAPE, RADIUS)) DO
(INCFI)
(SETQZ (+ (*ZZ) _C)))
D

Maxima version :

/* easy to read but very slow version, uses complex type numbers */
GiveLastlIteration(z,c):=
block([i:0],
while abs(z)<ER and i<iMax
do (z:z*z + c,i:i+1),
D$

/* faster version, without use of complex type numbers,
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compare with c version, ER2=ER*ER */

GiveLastIter(zx,zy,cx,cy,ER2,iMax):=
block(

[i:0,zx2,zy2],

7ZX2:7X*7X,

Zy2:Zy*zy,

while (zx2+zy2<ER2) and i<iMax do
(

zy:2*zx*zy + cy,

ZX:ZX2-Zy2 +CX,

7X2:7X*7X,

zy2:zy*zy,

1ii+1

),
return(i)

);

Boolean Escape time [edit]
Algorithm: for every point z of dynamical plane (z-plane) compute iteration number ( last
iteration) for which magnitude of z is greater than escape radius. If last_iteration=max_ iteration

then point is in filled-in Julia set, else it is in its complement (attractive basin of infinity ). Here one
has 2 options, so it is named boolean algorithm.

if (LastIteration==IterationMax)
then color=BLACK; /* bounded orbits = Filled-in Julia set */
else color=WHITE; /* unbounded orbits = exterior of Filled-in Julia set */

In theory this method is for drawing Filled-in Julia set and its complement ( exterior), but
when c is Misiurewicz point ( Filled-in Julia set has no interior) this method draws nothing. For
example for c=i . It means that it is good for drawing interior of Filled-in Julia set.

ASCII graphic/edit]

; common lisp
(loop for y from -2 to 2 by 0.05 do
(loop for x from -2 to 2 by 0.025 do

(let* ((z (complex x y))

(c (complex -1 0))

(iMax 20)
(i0))

(loop while (< 1iMax ) do
(setqz(+(*zz)c))
(incf 1)

(when (> (abs z) 2) (return i)))

(if (= i iMax) (princ (code-char 42)) (princ (code-char 32)))))
(format t "~%"))

Source: https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/Julia_set
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